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a b s t r a c t

Studies have reported that a selective deficit in visual motion processing is present in certain develop-
mental disorders, including Williams syndrome and autism. More recent evidence suggests a visual
motion impairment is also present in adults with fragile X syndrome (FXS), the most common form of
inherited mental retardation. The goal of the current study was to examine low-level cortical visual pro-
cessing in infants diagnosed with FXS in order to explore the developmental origin of this putative deficit.
We measured contrast detection of first-order (luminance-defined) and second-order (contrast-defined)
gratings at two levels of temporal frequency, 0 Hz (static) and 4 Hz (moving). Results indicate that infants
with FXS display significantly higher detection thresholds only for the second-order, moving stimuli com-
pared to mental age-matched typically developing controls.

! 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Fragile X syndrome (FXS) is the most common form of inherited
mental retardation, affecting approximately 1 in 3600 individuals
in the general population (Crawford, Acuna, & Sherman, 2001,
2002). The genetic cause of FXS is a trinucleotide repeat expansion
in the 50 untranslated region of the fragile X mental retardation-1
(FMR1) gene on the X chromosome, which results in disruption
or complete absence of the mRNA-binding protein, fragile X mental
retardation protein (FMRP). It is the lack or significant reduction of
this protein that causes the physical, cognitive and behavioral phe-
notype characteristic of FXS. The histological expression of FMRP
has been reported to be highest in the brain, testes, and eyes,
and is especially critical in the early stages of development in these
areas (Bakker et al., 2000). This finding is supported by evidence
showing that FMRP is involved in dendritic spine formation, a pro-
cess known to play a role in synaptic development and plasticity
(Jin & Warren, 2000). Such dendritic abnormalities have been
found in occipito-parietal areas of FMR1 knock-out mice as well
as visual cortices of autopsied tissue from patients with FXS (Com-
ery et al., 1997; Irwin, Galvez, Weiler, Beckel-Mitchener, & Green-
ough, 2002), suggesting that FMRP is an important protein in the
development of neural networks in visual areas of the brain.

While the gene for FXS has been identified and DNA testing
through routine blood test is available, FXS is often undiagnosed

until the age of three or later unless previous family history of
the disorder exists, or the physical features of the disorder (e.g.,
macroorchidism, long, narrow face and prominent ears, and con-
nective tissue problems) are noted by a physician (Bailey, Roberts,
Mirrett, & Hatton, 2002; Mirrett, Bailey, Roberts, & Hatton, 2004).
For this reason, a vast literature exists describing the molecular,
cognitive and behavioral profiles of children and adults with FXS,
but very little research has explored the early sensory or cognitive
development of infants with FXS.

Mental retardation is the primary phenotype of children and
adults with FXS, although a profile of cognitive strengths and
weaknesses has been reported (Bennetto & Pennington, 2002).
Strengths have been identified in areas including vocabulary,
long-term memory, and face and emotion discrimination (Crowe
& Hay, 1990; Freund & Reiss, 1991; Simon & Finucane, 1996), while
poorer performance is typically demonstrated on tasks requiring
skills in visual memory, visual–spatial and visual–motor coordina-
tion, processing of sequential information, numerical processing,
and inhibitory control (Cornish, Munir, & Cross, 1998, 2001;
Mazzocco, Bhatia, & Lesniak-Karpiak, 2006; Rivera, Menon, White,
Glaser, & Reiss, 2002; Scerif, Cornish, Wilding, & Driver, 2007).
Females are generally less severely affected compared to males be-
cause their FMRP levels are commonly higher than those of males
as a result of their normal second X chromosome, but both sexes
show lower cognitive functioning when compared to mental age-
matched (MA) typically-developing (TD) individuals (Loesch,
Huggins, Bui, Taylor, & Hagerman, 2003).

Research studies suggest that FXS is not associated with a
global deficit in visual processing; rather, impairments in indi-
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viduals with the disorder are specific and primarily observed in
abilities subserved by the dorsal stream (Cornish, Munir, & Cross,
1999; Cornish et al., 1998, 2001; Kogan et al., 2004a, 2004b). It
is well established that visual information is processed through
two distinct, but interacting, streams; the ventral and dorsal cor-
tical pathways. The ventral stream involves processing of object
features such as color and form, as well as face recognition, and
projects from primary visual cortex to the inferotemporal cortex,
while visually-guided actions and processing of motion informa-
tion are served by the dorsal stream, projecting from primary vi-
sual cortex to the posterior parietal cortex (Milner & Goodale,
1995; Ungerleider & Mishkin, 1982). The identification of a spe-
cific dorsal stream deficit in FXS comes from experimental find-
ings that individuals with FXS perform worse on tasks that
require visual–spatial and visual–motor coordination, while vi-
sual acuity and recognition are normal. For example, visual abil-
ities such as those required to identify partially complete object
drawings (Gestalt Closure Task) and discriminate between ob-
jects have been reported to be intact in individuals with FXS,
but impaired performance is observed on tasks requiring the
replication of an abstract block design (Block Design Task) or
copying a drawing from a model (Cornish et al., 1998, 1999;
Crowe & Hay, 1990). Other developmental disorders including
Williams syndrome, autism, and developmental dyslexia have
also been found to show characteristic patterns of dorsal stream
dysfunction (Atkinson et al., 1997; Braddick, Atkinson, & Wat-
tam-Bell, 2003; Spencer et al., 2000).

A recent set of studies by Kogan et al. (2004a, 2004b) examined
the possible neurobiological factors contributing to visual difficul-
ties in adolescents and adults with FXS. Their study provided
immunohistochemical evidence that neurons in the magnocellular
(M) layers of the LGN from an adult male with FXS were abnor-
mally small and displayed no FMRP staining, suggesting that a lack
of FMRP protein may result in disruption of function of cells in the
M layers. Individuals with FXS showed reduced contrast sensitivity
for the detection of low spatial frequency gratings, but no differ-
ence from control groups for detecting high spatial frequency grat-
ings. Additionally, they reported no group difference for chromatic
contrast thresholds. These findings were interpreted as lending
support for the hypothesis that an absence of FMRP in individuals
with FXS differentially impacts M pathway functioning while pro-
cessing of P pathway stimuli remains spared. Kogan et al. (2004b)
also found that patients with FXS had significantly higher thresh-
olds for detecting coherent motion, but they did not demonstrate
a difference in performance on a form coherence task.

Kogan et al. (2004a) further examined sensitivity to discrimi-
nating the orientation and the direction of motion of first- and sec-
ond-order gratings stimuli. They reported that adults with FXS
displayed increased orientation discrimination thresholds for sec-
ond-order form stimuli and increased direction discrimination
thresholds for first- and second-order motion stimuli, but near nor-
mal perception for discriminating the orientation of first-order
form stimuli. While this may support the hypothesis of a pervasive
dorsal stream deficit present in individuals FXS, the significantly
greater threshold levels in response to second-order form stimuli
may be a consequence of processing differences between first-
and second-order stimuli. First-order stimuli are luminance-de-
fined, while second-order stimuli have no variation in mean lumi-
nance and are defined by other attributes such as contrast, texture,
or depth (Cavanagh & Mather, 1989; Chubb & Sperling, 1988; Seiffert
& Cavanagh, 1998).

The aim of the current study was to determine whether in-
fants with FXS differ compared to MA-matched TD infants in their
ability to detect first- or second-order gratings of varying contrast
at two levels of temporal frequency, either static (0 Hz) or moving
(4 Hz).

2. Methods

2.1. Participants

Two groups of participants were enrolled in this study, a group of 32 infants
with FXS (27 males and 5 females) and a group of 37 TD infants (29 males and 8
females). Infants with FXS were recruited and clinically evaluated at the UC Davis
M.I.N.D. Institute Fragile X Research and Treatment Center (FXRTC), and molecular
DNA testing was carried out to confirm their diagnosis. TD infants were recruited
through letters to families, fliers, and word of mouth in Davis, California.

Data from five infants with FXS were not included in the final analysis because
the infant was either fussy or crying during the eye tracking testing session (2) or
did not provide gaze data for all trials (3). Four TD infants were not included as a
result of fussiness (1), parent verbal interference (1), or insufficient trial number
(2). Mean chronological age for the FXS and TD groups was 24.42 months
(±10.52) and 17.86 months (±9.49), respectively.

2.2. Cognitive assessment

To control for differences in developmental level, all infants with FXS were as-
sessed using the Mullen Scales of Early Learning (Mullen, 1995) to derive a mental
age. The MSEL is a standardized developmental test for children ages 3–60 months,
consisting of 5 subscales: gross motor, fine motor, visual reception, expressive lan-
guage, and receptive language. The MSEL was administered to participants with FXS
according to standard instructions by a trained Clinician. Infants in the FXS group
had a mean mental age of 14.31 months (±6.64), which was matched as closely
as possible to infants in the TD group (17.86 months ±9.49), who were chronolog-
ically younger than the FXS participants. An independent samples t-test confirmed
that mental age did not differ significantly between the two final groups
(t1,58 = 1.716, p = 0.095, two-tailed). The marginal difference in mean mental age be-
tween groups is unlikely to have contributed to the experimental findings because
the two groups performed equally on some of the detection task conditions.

2.3. Apparatus and stimuli

All stimuli were presented on a Tobii 1750 binocular eye tracker monitor (Tobii
Technology, www.tobii.com). This eye tracking system consists of a high-resolution
camera embedded in a 17-in. monitor (1280 ! 1024 pixels resolution, 50 Hz refresh
rate) with infrared light-emitting diodes that generate even lighting to capture
images of the subject’s eyes. The fixed wide-angle camera allows data to be re-
corded from a freely-moving person, with approximately 20 centimeters (cm) of
freedom on each side. Gaze signals can be reacquired 100 milliseconds (ms) after
blinks or other interruptions; there is no delay caused by reorientation of the cam-
era. Data are captured at a frame rate of 50 Hz and sent in real-time to the Clear-
View application (version 2.7.0) to be overlaid on the stimuli for analysis
purposes. There are several benefits of the Tobii 1750 system that make it condu-
cive to testing infants, including high tolerance to head-motion without requiring
any head restraints, reusable calibrations, and an average precision of 0.5 deg of vi-
sual angle. The luminance of the Tobii LCD display was gamma-corrected to mini-
mize luminance non-linearities. Speakers were located directly behind the monitor
and allowed the infant to hear the auditory component of the inter-stimuli atten-
tion-getter video. All gaze data were collected using ClearView analysis software.
Stimuli were generated using The Vision Shell PPC program, controlled by an Apple
G4 Power Macintosh with OS9.

Four types of stimuli were used: first-order (luminance-defined) and second-or-
der (contrast- or texture-defined) sine wave gratings at two levels of temporal fre-
quency, static (0 Hz) or moving (4 Hz) (Fig. 1). The first-order grating was a single
luminance-defined sinusoidal carrier with a spatial frequency of 0.35 cycles (cyc)/
degree (deg), oriented vertically or horizontally, counterbalanced on either the left
or right side of the monitor. First-order stimuli were either 0 Hz, static gratings or
4 Hz gratings drifting in a leftward or rightward direction. These specific spatial and
temporal frequencies were chosen because they are near optimal for young infants
(Atkinson, Braddick, & Moar, 1977; Banks, 1982–1983; Dobkins, Anderson, & Lia,
1999). The Michelson contrast of the first-order grating was varied at 4 levels
(7%, 14%, 21% or 28%) to determine contrast detection thresholds. The second-order
grating stimuli consisted of a dynamic (flickering) random-dot carrier pattern (each
dot was 0.2 deg by 0.2 deg, updated randomly on each frame) modulated by a con-
trast-defined sinusoid which was 0.35 cyc/deg, oriented either vertically or hori-
zontally, at a TF of 0 Hz or 4 Hz. The mean luminance of the second-order grating
was equal at all points on the grating. The amplitude of the second-order sinusoidal
contrast modulation was varied at 4 levels (10%, 21%, 31% or 42%) by manipulating
the carrier contrast from 0 (Nishida, 1993). Although peaks in the carrier contrast
could give away the presence of a putatively second-order pattern, this possibility
holds for all carrier contrasts, not just those varied from zero (Cropper, 1998), and
while randomizing the carrier contrast is ideal (Cropper, 1998), it is not possible
with infant subjects. Importantly, because the carrier was identical in both sec-
ond-order TF conditions, any threshold difference between the two conditions can-
not be attributed to the first-order component. Gratings were presented within a
3 second (s) temporal Gaussian window (fading in and out of view), and subtended
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a 16.0 deg by 24.6 deg region on the screen when viewed from a distance of 60 cm.
A schematic of the first- and second-order stimuli used in each detection task is pre-
sented in Fig. 1.

2.4. Procedure

The experimental protocol was approved by the Institutional Review Board at
the University of California, Davis, and informed consent was obtained from parents
of all infants. Infants were tested while seated on a caregiver’s lap. An experimenter
monitored the infant’s eye position through the ClearView application real-time
track-status meter in addition to a standard VHS camera feed projected to a televi-
sion monitor in the control room. Eye tracking began with a five-point calibration
routine, and instances in which the infant was not looking at the target or was mov-
ing his/her eyes were discarded and the routine was repeated to collect useable cal-
ibration data for that quadrant of the screen.

All conditions were presented as a 2-alternative forced-choice preferential look-
ing procedure (Teller, 1979). This paradigm makes use of infants’ preference to look
at a patterned stimulus rather than a uniform field of equal luminance to the mean
luminance of the stimulus. During each trial, gratings faded in during the first
500 ms either on the left or right half of the screen, determined randomly, and
remained at the peak contrast level for 2 s before fading out for the last 500 ms. Be-
tween trials, attention was drawn to the middle of the screen with a centrally-lo-
cated flashing colorful circle accompanied by a single tone, lasting for 2 s. Each
detection task consisted of 10 trials at each contrast level, presented in random or-
der. The level of temporal frequency (0 Hz or 4 Hz) was a within-subject factor. The
grating type (luminance- or contrast-defined) was a between-subject factor. This
was necessary to keep the duration of the experiment manageable for the infant
subjects. Temporal frequency conditions were presented in counterbalanced order,
among other tasks related to a different experiment.

3. Analyses

3.1. Coding

Infants who provided gaze data on all trials within a given
detection task condition were included in the final analysis. For
each infant, a video recording of the stimuli overlaid with the
eye tracking gaze data was imported into Noldus Observer 5.0 soft-
ware for coding. Eye tracking data were coded using the Area-of-
Interest (AOI) definition tool within the ClearView application.
AOIs were defined by splitting the screen at the midline into two
equal areas. For each recording, fixation position (left, right, center,
or away) during each frame of each 3 s test trial was coded from
the raw data. A fixation was defined as data points within a 30 pix-
el radius for a minimum duration of 100 ms. Fixations occurring on
the midline between the left and right AOI were interpreted as
detection of the stimulus edge, and thus included in the looking
time toward the stimulus side. Because the locations of the stimu-
lus edges at the center of the screen were identical in all condi-
tions, this did not bias the results in any way. A visual preference
(VP) score, which indexes the proportion of looking time to the
stimulus side of the screen, was calculated using the following for-
mula: (looking time to stimulus side + center)/(looking time
left + right + center). VP scores were between 0 and 1, with 0.5 con-
sidered performance at the chance level. Trials in which no fixa-

tions occurred were considered missing trials and were not given
a VP score or included in the final calculation. For each infant, a
mean VP score was calculated at each contrast level, and used to
determine group VP scores for each of the four detection task
conditions.

3.2. Threshold estimation

To obtain individual contrast detection thresholds, a logistic
function was fit to each infant’s average VP scores as a function
of contrast using the psignifit toolbox (version 2.5.6) for Matlab,
which implements the maximum-likelihood procedure described
by Wichmann and Hill (2001). Threshold performance was defined
as the contrast value yielding a 75% VP score. To estimate param-
eters, threshold, slope, and error, a bootstrapping technique was
used which included 5000 replications for each fitted function.
The distribution of these thresholds was used to generate 95% con-
fidence intervals for the threshold estimate. Individual infant
threshold values were used to calculate group detection thresholds
for each task condition.

4. Results

Of the 15 infants with FXS who were presented the first-order
stimulus condition, 12 successfully completed at least one of the
temporal frequency conditions and were included in the final anal-
ysis (0 Hz = 7, 4 Hz = 9, 4 infants completed both), and of the sev-
enteen who were presented the second-order stimulus condition,
fifteen were included in the final analysis (0 Hz = 9, 4 Hz = 9, 3 in-
fants completed both). Seventeen of the TD infants were presented
the first-order stimulus condition, of which, 15 were included in
the final analysis (0 Hz = 11, 4 Hz = 8, 4 infants completed both),
and of the 20 who were shown the second-order stimulus condi-
tion 18 were able to complete at least one temporal frequency con-
dition and were included in the analysis (0 Hz = 13, 4 Hz = 14, 9
infants completed both). While the majority of infants completed
all trials of at least one temporal frequency level, it was challenging
to maintain the interest of all infants across both stimulus
conditions.

A repeated measures ANOVA using VP scores, with one within-
group factor (contrast level: 1–4), and one between-group factor
(group: TD, FXS), was conducted for each stimulus condition to
confirm a main effect of contrast on preferential looking. Because
grating type (luminance- or contrast-defined) was used as a be-
tween-subject factor in the study, first- and second-order condi-
tions were analyzed separately. A significant main effect of
contrast (F3,48 = 3.255, p = 0.030, g2 = 0.169), but no effect of group
(F1,16 = 0.004, p = 0.948) or contrast ! group interaction
(F3,48 = 0.366, p = 0.778) was found for the first-order 0 Hz gratings.
The detection of first-order, 4 Hz stimuli revealed a significant

Fig. 1. A schematic representation of the stimuli presented during each of the four conditions. (a) First-order, luminance-defined static (0 Hz) stimuli (left) and moving (4 Hz)
(right). (b) Second-order, contrast-defined static (0 Hz) stimuli (left) and moving (4 Hz) (right). All gratings had a spatial frequency of 0.35 cyc/deg, were randomly oriented
vertically or horizontally, and were presented on either the left of right half of the screen. Arrows indicate possible direction of motion (either left or right, randomly). Grating
type was presented between infants and temporal frequency condition was presented in counterbalanced order within infants.
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main effect of contrast (F3,45 = 6.629, p = 0.001, g2 = 0.306), but no
effect of group (F1,15 = 1.684, p = 0.214) or contrast ! group inter-
action (F3,45 = 0.424, p = 0.736). For the second-order, 0 Hz detec-
tion task there was a significant main effect of contrast
(F3,60 = 20.692, p = 0.001, g2 = 0.509), but no effect of group
(F1,20 = 0.166, p = 0.688) or contrast ! group interaction
(F3,60 = 3.126, p = 0.092). Finally, a significant main effect of con-
trast (F3,63 = 22.918, p = 0.001, g2 = 0.522) and group (F1,21 = 4.414,
p = 0.048, g2 = 0.174), but no contrast ! group interaction (F3,63 =
2.075, p = 0.112) was found for the second-order, 4 Hz stimulus
condition. These results demonstrate that VP scores increased as
a function of increasing contrast for each stimulus condition, con-
firming that the manipulation of contrast was effective. A signifi-
cant group difference was found only for the second-order higher
temporal frequency stimulus condition, driven by the lower VP
scores in the FXS group.

Given that there was a significant effect of stimulus contrast on
VP scores for each condition, we examined group differences by
calculating individual detection thresholds. Representative psy-
chometric functions from one infant in each group who completed
both temporal frequency levels of either the first- or second-order
task condition are shown in Fig. 2. The stimulus contrast required
for a 75% VP score was taken as the threshold of stimulus detec-
tion. For each grating type, a two-factor ANOVA was performed
to compare mean threshold contrasts at each of the temporal fre-
quency levels by group. The results for first-order stimuli yielded
no significant difference in thresholds between groups for either

the 0 Hz (F1,16 = 0.008, p = 0.981) or 4 Hz (F1,15 = 0.841, p = 0.984)
conditions. For the second-order condition, a comparison of
threshold values revealed no difference for detection of the 0 Hz
stimuli (F1,20 = 0.814, p = 0.378), but a significant difference for
detection of the 4 Hz stimuli (F1,21 = 4.897, p = 0.038, g2 = 0.189).
These results indicate that infants with FXS had significantly ele-
vated contrast detection thresholds only for the second-order stim-
uli of higher temporal frequency (mean threshold = 34.4% ± 0.174)
compared to the TD control group (mean threshold = 21.8% ±
0.100), as graphed in Fig. 3.

5. Discussion

In this study, we tested whether infants with FXS differ from
MA-matched TD infants in their contrast detection thresholds for
first- or second-order gratings at two temporal frequencies. The re-
sults reveal that there is a selective deficit in detection of dynamic
second-order stimuli in infants with FXS. This finding can be ex-
plained by an impairment in either temporal or motion processing.
These explanations need not be mutually exclusive. Active, or
attention-based, motion perception has been shown to critically
depend on the temporal discrimination of events in space, such
that deficits in temporal processing cause deficits in differentiating
the onsets and offsets present in apparent motion displays (Battelli,
Pascual-Leone, & Cavanagh, 2007; Battelli et al., 2001; Cavanagh,
1992; Cavanagh & Mather, 1989; Verstraten, Cavanagh, & Labianca,
2000). Therefore, fine temporal resolution and motion perception
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may be closely linked. Indeed, both are subserved by higher stages
of processing associated with parietal areas of the brain (Battelli,
Cavanagh, Martini, & Barton, 2003; Battelli et al., 2001, 2007;
Culham et al., 1998). It may be that neural networks mediating
temporal tracking are impaired from infancy in individuals with
FXS. This interpretation is consistent with the finding that atten-
tional deficits are characteristic of FXS (Cornish et al., 2001; Munir,
Cornish, & Wilding, 2000; Scerif, Cornish, Wilding, Driver, & Kar-
miloff-Smith, 2004; Scerif et al., 2007), and supported by evidence
from children and adults with FXS demonstrating lower perfor-
mance on other parietally-mediated tasks such as coherent motion
processing, visual–motor coordination, and basic numerical com-
putation (Cornish et al., 1999; Kogan et al., 2004a; Rivera et al.,
2002). Our findings are discussed in terms of a possible atten-
tion-based temporal deficit in the tracking of second-order dy-
namic information, and with respect to previous findings of
typical and atypical development of second-order processing.

5.1. Second-order motion processing

There is ample evidence for a dissociation between first- and
second-order motion processing. Evidence from psychophysical
(Ashida, Seiffert, & Osaka, 2001; Cavanagh & Mather, 1989; Chubb
& Sperling, 1988; Derrington & Badcock, 1985; Ledegeway & Smith,
1994; Nishida & Sato, 1995; Seiffert & Cavanagh, 1998), neuropsy-
chological (Greenlee & Smith, 1997; Vaina & Cowey, 1996; Vaina,
Makris, Kennedy, & Cowey, 1998) and visual evoked potential
(Ellemberg et al., 2003a) data suggest that first- and second-order
motion are processed by different neuronal mechanisms. For
example, sensitivity to first- or second-order motion is not affected
by adaptation to motion of the other order (Nishida, Ledgeway, &
Edwards, 1997), and humans do not integrate alternating frames
containing first- and second-order motion into an unambiguous
motion percept (Ledegeway & Smith, 1994). It has also been ob-
served that, unlike first-order motion, second-order motion stimuli
do not readily induce optokinetic nystagmus (Harris & Smith,
1992). Finally, Ellemberg et al. (2003a) have shown that the psy-
chophysical reaction time and the latency of the visual evoked po-

tential are longer for the onset of second-order compared to first-
order motion. This dissociation is supported by evidence of order-
specific clinical disorders of motion perception found in some brain
damaged patients (Greenlee & Smith, 1997; Vaina & Cowey, 1996;
Vaina, Soloviev, Bienfang, & Cowey, 2000).

Evidence for both a low-level motion-energy or gradient mech-
anism and a higher-level, feature-tracking and attention-based
mechanism exists for the detection of second-order, contrast-de-
fined, motion (Cavanagh, 1992; Johnston, McOwan, & Buxton,
1992; Nishida & Sato, 1995; Seiffert & Cavanagh, 1998; Sperling,
1989; Whitney & Bressler, 2007). It is likely that both of these sys-
tems operate together to detect second-order motion. Given that
infants with FXS were not impaired when detecting first-order mo-
tion, which is processed by a passive, velocity sensitive mechanism
(Seiffert & Cavanagh, 1998), their impairment may be in the high-
er-level attentive or feature-tracking mechanism.

The existence of higher-level feature or ‘‘attentive” tracking of
second-order motion (Ashida et al., 2001; Cavanagh, 1992;
Derrington, Allen, & Delicato, 2004; Seiffert & Cavanagh, 1998) is
supported by studies showing that dividing attention between dif-
ferent second-order moving stimuli reduces sensitivity to the mo-
tion (Allen & Ledgeway, 2003; Ho, 1998; Lu & Liu, 2000), and that
visual search rate for low contrast second-order targets is slower
than for first-order targets and operates in a serial manner (Ashida
et al., 2001). A network of several cortical areas, including parietal
and frontal regions, is believed to be engaged in attentive tracking
(Culham et al., 1998) and may mediate the perception of second-
order motion, although the neuroimaging results are mixed
(Dumoulin, Baker, Hess, & Evans, 2003; Nishida, Sasaki, Murakami,
Watanabe, & Tootell, 2003; Seiffert, Somers, Dale, & Tootell, 2003;
Smith, Greenlee, Singh, Kraemer, & Hennig, 1998).

5.2. Typical and atypical development of second-order motion
processing

Few studies have examined the development of first- versus
second-order motion perception during infancy and early child-
hood. It has been reported that infants as young as 2 months of

0

10

20

30

40

50

First-Order
0 Hz

First-Order
4 Hz

Second-Order
0 Hz

Second-Order
4 Hz

Stimulus Condition

De
te

ct
io

n 
Th

re
sh

ol
d 

(C
on

tra
st

 %
)

TD

FXS*

Fig. 3. Mean contrast detection thresholds for each group of infants tested in each task condition. No significant difference in thresholds between groups was found for either
the static (0 Hz) (F1,16 = 0.008, p = 0.981) or moving (4 Hz) (F1,15 = 0.841, p = 0.984) first-order stimuli. For the second-order stimuli, a comparison of threshold values revealed
no significant difference for detection of the static stimuli (F1,20 = 0.814, p = 0.378), but a significant difference for detecting the moving stimuli (F1,21 = 4.897, p = 0.038,
g2 = 0.189). Infants with FXS had significantly elevated thresholds only for the second-order higher temporal frequency gratings (mean threshold = 34.4% ± 0.174), compared
to the TD control group (mean threshold = 21.8% ± 0.100). Asterisk indicates significance at the p < 0.05 level. Error bars represent ±SEM.
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age can detect both first- and second-order moving stimuli, as dem-
onstrated by a significant preference to look at a stimulus contain-
ing either a first- or second-order dynamic pattern when paired
with a control stimulus of similar spatiotemporal properties but
no motion. Infants’ preferential looking at the moving stimuli
was slightly stronger for first- than second-order, but because this
difference was equally present in an older group of 4- to 5-month-
old infants the authors conclude that both age groups are sensitive
to second-order dynamic stimuli and a differential developmental
time course likely does not exist for sensitivity to the two kinds of
motion (Atkinson, Braddick, & Wattam-Bell, 1993; Braddick, Atkin-
son, & Hood, 1996). It is important to consider that since infants
were not required to discriminate motion direction, they may have
simply preferred dynamic over static stimuli and were not neces-
sarily detecting motion.

Ellemberg et al. (2003b) compared discrimination thresholds
for first- versus second-order motion in 5-year-olds and adults at
temporal frequencies of 1.5 and 6 Hz and found that 5-year-olds
were significantly less sensitive than adults when discriminating
the upward or downward motion of both orders of motion at both
frequencies, and that the developmental difference in sensitivity
for first-order was much less than for second-order at the higher
temporal frequency. These findings indicate that at five years of
age, sensitivity to first-order motion is more mature than sensitiv-
ity to second-order motion, specifically at the faster velocity. A re-
cent study by Bertone, Hanck, Cornish, and Faubert (2008)
measured orientation- and direction-identification thresholds for
first- and second-order stimuli across the ages of 5–10 years and
found that perception of second-order moving stimuli (2 Hz) is sig-
nificantly less developed in the youngest age group, and reaches
adult levels earlier than first-order. Taken together, this pattern
of results suggests that development of second-order motion dis-
crimination may develop at a different rate than that of first-order
motion, particularly during the childhood years. With respect to
our study, typically developing infants showed no difference in
thresholds for first- versus second-order static or moving stimuli,
but because comparing first- and second-order raw thresholds
within group is not valid unless the salience or effective contrast
is psychophysically equated, we are unable to draw any conclusion
about the developmental time course of sensitivity. We also cannot
directly compare thresholds obtained from typically developing in-
fants in our study to thresholds found in the study by Ellemberg
et al. (2003b) because of differences in stimuli (second-order stim-
uli are defined differently), tasks (detection versus discrimination),
and age groups. Since our preferential looking task assessed
thresholds for detection rather than discrimination, our data may
be most comparable to, and in agreement with, results from other
studies of infants showing parallel maturation for the detection of
first- and second-order dynamic stimuli relative to older infants or
adults (Braddick et al., 1996; Thibault, Brosseau-Lachaine, Faubert,
& Vital-Durand, 2007).

A comparison between the present study and the few other
studies that have measured first- and second-order visual process-
ing in individuals with developmental delay indicates that similar
patterns of performance exist among certain conditions, possibly
as a result of related etiologies. Thibault et al. (2007) examined
the development of sensitivity to first- and second-order dynamic
stimuli (2 Hz) in a group of children with strabismus, ranging in
age from 10 months to 7 years, compared to prematurely born in-
fants (8- to 24-months-old) and infants without any visual disor-
ders. Thresholds for detecting both stimulus types decreased
with age in all groups. In the group of infants with strabismus, both
first- and second-order detection thresholds were significantly
higher than in the control group, while premature infants cor-
rected for gestational age perceived first-order stimuli as well as
controls, but did show a significant delay in their development of

sensitivity to second-order dynamic stimuli. Whether these results
are restricted to dynamic stimuli or whether they extend to the
detection of second-order static stimuli was not tested.

With regard to individuals with high-functioning autism, the
only study to directly examine first- versus second-order motion
processing found that direction discrimination sensitivities for
first-order stimuli were comparable for control and autism groups,
while significantly reduced sensitivity to second-order stimuli was
observed in the autism group (Bertone, Mottron, Jelenic, & Faubert,
2003). In addition, individuals with autism were found to demon-
strate superior performance, relative to controls, in orientation dis-
crimination of first-order stimuli, but had significantly higher
thresholds for second-order static gratings (Bertone, Mottron,
Jelenic, & Faubert, 2005). This led to the ‘‘complexity-specific
hypothesis” in autism since the processing of second-order infor-
mation, whether static or dynamic, is deficient (Bertone & Faubert,
2006; Bertone et al., 2003, 2005).

The results reported here reveal the first infant patient popu-
lation with a selective deficit in detecting second-order moving
(temporally varying) gratings and confirm the dissociation be-
tween first- and second-order processing of dynamic stimuli.
Our data extend the results of Kogan et al. (2004a, 2004b) by
uncovering the developmental trajectory of the putative dorsal
stream deficit in both male and female infants diagnosed with
FXS.

6. Conclusions

This study demonstrates that infants with FXS can be tested
using psychophysical tasks, and that precise thresholds can be esti-
mated. These results are important in that they do not support the
interpretation of a low-level motion processing or strictly subcor-
tical deficit in infants with FXS. Indeed, only detection thresholds
for the second-order, dynamic stimuli were significantly elevated
in the FXS group, suggesting, instead, that abnormalities may exist
in higher-level cortical areas responsible for attention-based tem-
poral processing involved in position tracking.

Our psychophysical methods can easily be extended to other vi-
sual stimuli, older age groups, and other developmental disorders.
It is not clear precisely when in development this visual processing
impairment may arise or if there is a critical period for the involve-
ment of FMRP in the early development of these visual areas. Fu-
ture psychophysical experiments are needed to further
understand the nature of this temporal processing deficit, particu-
larly as it relates to mechanisms of direction discrimination. We
will explore the relationship between this visual processing differ-
ence and downstream early cognitive abilities such as object track-
ing in future studies.
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